Genomics-driven oncology

Nearly all cancers are caused by genetic changes that alter important biological pathways controlling cell growth and survival. Specific genetic changes influence the rate of cell growth, determine how aggressively the cancer will spread and control whether one drug will be more effective as another at killing the cancer cells.

Over the past decade, advances in genomic technologies, tumor analysis and drug development have changed the landscape of cancer diagnosis and treatment. In the laboratory, genomic information obtained from cancer cells has reshaped understanding of how cancer forms. In the clinic, this same information is beginning to guide therapeutic decisions, improving outcomes for patients with cancer.

Lung adenocarcinoma

Estimated U.S. annual incidence: 77,545 new cases

Lung adenocarcinoma is the most common form of lung cancer. At least 60 percent of patients have identifiable genetic mutations that impact the rate of cell division. Approved or experimental anti-cancer drugs target more than half of these mutations. For example, tumors with activating mutations in the EGFR gene can be successfully treated with the drug gefitinib and erlotinib, which bind to and silence the mutated EGFR protein. However, this therapy is completely ineffective if mutations are also present in a separate gene known as KRAS – a striking example of the complex genetic nature of cancer.

Melanoma

Estimated U.S. annual incidence: 76,605 new cases

Nearly 90 percent of melanomas have mutations in a gene called BRAF and the U.S. Food and Drug Administration has approved two drugs that target BRAF as part of a treatment plan. Melanoma has also been linked to mutations in the TERT gene, which encodes a component of telomerase. This protein regulates the length of telomeres – those repeating DNA sequences found at the ends of chromosomes. The cancer-associated mutations are believed to increase the level of telomerase, which allows cells to divide for a longer period of time. Found in over 70 percent of analyzed melanomas, this may be one of the most common drivers of cancer growth.

Uterine cancer

Estimated U.S. annual incidence: 48,840 new cases

Genetic analysis has identified four main subgroups of uterine cancer. Intriguingly, one type shares several genetic characteristics with both high-grade ovarian and basal-like breast cancers. This suggests there may be common drug targets that are effective for all three cancers.

Comparing mutation patterns across cancer

A recent study by The Cancer Genome Atlas analyzed the genetic changes present in over 3,000 tumors from 12 different cancer types. Alterations were consistently identified in over 479 regions of the genome.

Ovarian cancer

Estimated U.S. annual incidence: 22,245 new cases

A two-tier classification system was recently introduced for ovarian cancer. Low-grade tumors are generally well-differentiated and have a more favorable outcome. Approximately two-thirds have mutations in the BRCA1, BRCA2 or BRIP1 genes. In contrast, high-grade ovarian cancers develop rapidly and nearly all cases have mutations not only in the TP53 gene, but show gains and losses in large chunks of genetic material throughout the genome.

Colon cancer

Estimated U.S. annual incidence: 142,920 new cases

Most colon cancers arise through a stepwise accumulation of genetic mutations that occur over the span of many years. Commonly, mutations arise in genes such as APC, BRAF, KRAS, PIK3CA, PTEN and SMAD4. Many of those are associated with small molecule drugs. A significant fraction of colorectal cancer have mutations in the system that monitors and repairs DNA damage. Not surprisingly, these cancer cells have an unusually high frequency of mutation across their genome.

References:


Classification of genetic alterations

The various mutations and alterations can be loosely grouped into one of four major biological pathways, two involved in receiving and transmitting "growth" signals from outside the cell, one that oversees DNA replication and cell division, and one that searches for and repairs DNA damage. Mutations within the same pathway are common to many tumor types. Additionally, most cancers have a combination of mutations that impacted multiple pathways.